What possibilities are there for enantiomers via HPLC?
- Chirality is "added" to the mobile phase - e.g. by adding a chiral reagent. This creates diastereomeric complexes between the sample molecules and the molecules of the chiral reagent, which migrate through the separation column at different speeds. The stationary phase remains unchanged, i.e. it is achiral.
- The enantiomers are reversibly derivatised, i.e. chemically reacted, with a suitable chiral compound. This produces diastereomers that can be separated on conventional HPLC phases. After separation, the derivatives are cleaved again, whereby care must be taken to ensure that no racemisation occurs under the reaction conditions.
- A specially modified, chiral phase is used as the stationary phase. The mobile phase remains unchanged. The enantiomers to be separated interact with the chiral stationary phase to varying degrees and thus leave the separation column at different times.
The last of the options mentioned (number 3) is generally referred to as "chiral HPLC". It is the easiest of the three variants to carry out and the probability of a successful separation is almost guaranteed due to the large number of stationary phases available.
Which stationary phases are used for chiral HPLC?
The stationary phases for chiral HPLC (chiral stationary phases - CSPs) are mostly based on silica gel. In order to separate enantiomers, this is modified with so-called chiral selectors. To date, a large number of such compounds have been developed, resulting in an enormous selection of available phases.
The following classes of compounds are mainly used as chiral selectors:
- So-called "brush phases" - simple chiral molecules, similar to alkyl chains in RP-HPLC, bound to the surface of the silica gel, e.g. dinitrobenzoylphenylglycine
- Helical polymers, e.g. cellulose or amylose derivatives
- Chiral cage compounds, e.g. cyclodextrins or crown ethers
- Proteins, e.g. bovine serum albumin (BSA) or pepsin
- Ligand exchange phases, e.g. amino acid-copper complexes
Modified cellulose or amylose derivatives are most commonly used because these phases can be used to separate a very wide range of enantiomers compared to other chiral selectors.
How are the chiral selectors bound to the silica gel?
There are several possibilities. Some of the chiral selectors can be covalently bound to the silica gel. However, this is not possible for some of the chiral selectors. For example, polysaccharide derivatives are either chemically immobilised to the silica gel ("Immobilized CSPs") or coated onto it ("Coated CSPs") in a special process. The difference between immobilised CSPs and coated CSPs is that the immobilised phases are far more resistant to organic solvents. A number of solvents are not permitted for coated CSPs, as these render the chiral stationary phase unusable over time. This is not the case for immobilised CSPs, which simplifies method development for the separation of enantiomers.
Which mobile phases can be used for chiral separations?
This depends on the stationary phase. As mentioned above, there are chiral phases that are compatible with many organic solvents and others for which the number of possible eluents is very limited. Which eluents may be used can often be found in the column information or "Care&Maintanance" sheets supplied by the manufacturer. If you are unsure, you should ask the respective manufacturer or distributor.
Further tips and information on chiral chromatography
Chiral separations are usually carried out isocratically. As with other chromatographic methods, the resolution for a particular analyte pair is strongly dependent on the selectivity of the stationary phase. Two other important parameters for method development are the mobile phase and the temperature. With chiral separations, it is often the case that the resolution increases with decreasing temperature.